46 research outputs found

    Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience

    Get PDF
    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later

    Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    Get PDF
    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction

    Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    Get PDF
    BACKGROUND: Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. CONCLUSIONS: We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching

    Local Extinction in the Bird Assemblage in the Greater Beijing Area from 1877 to 2006

    Get PDF
    Recent growth in industrialization and the modernization of agricultural activities, combined with human population growth, has greatly modified China’s natural environment, particularly in the vicinity of large cities. We compared avifauna checklists made between 1877 and 1938 with current checklists to determine the extent of local bird extinctions during the last century in the greater Beijing area. Our study shows that of the 411 bird species recorded from 1877–1938, 45 (10.9%) were no longer recorded from 2004–2006. Birds recorded as ‘rare’ in 1938 were more likely to have disappeared in subsequent years. Migrant status also influenced the probability of local bird extinction with winter migrants being the most affected class. Moreover, larger birds were more likely to have disappeared than smaller ones, potentially explained by differential ecological requirements and anthropogenic exploitation. Although our habitat descriptions and diet classification were not predictors of local bird extinction, the ecological processes driving local bird extinction are discussed in the light of historical changes that have impacted this region since the end of the 1930 s. Our results are of importance to the broader conservation of bird wildlife

    Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units

    Full text link

    Quantitative morphological evidence for incipient species within Lutzomyia quinquefer (Diptera: Psychodidae)

    No full text
    Morphological variation among geographic populations of the New World sand fly Lutzomyia quinquefer (Diptera, Phlebotominae) was analyzed and patterns detected that are probably associated with species emergence. This was achieved by examining the relationships of size and shape components of morphological attributes, and their correlation with geographic parameters. Quantitative and qualitative morphological characters are described, showing in both sexes differences among local populations from four Departments of Bolivia. Four arguments are then developed to reject the hypothesis of environment as the unique source of morphological variation: (1) the persistence of differences after removing the allometric consequences of size variation, (2) the association of local metric properties with meristic and qualitative attributes, rather than with altitude, (3) the positive and significant correlation between metric and geographic distances, and (4) the absence of a significant correlation between altitude and general-size of the insects
    corecore